Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Brain Behav Immun ; 118: 318-333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460804

RESUMO

Zika virus (ZIKV), the causative agent of Zika fever, is a flavivirus transmitted by mosquitoes of the Aedes genus. Zika virus infection has become an international concern due to its association with severe neurological complications such as fetal microcephaly. Viral infection can induce the release of ATP in the extracellular environment, activating receptors sensitized by extracellular nucleotides, such as the P2X7 receptor. This receptor is the primary purinergic receptor involved in neuroinflammation, neurodegeneration, and immunity. In this work, we investigated the role of ATP-P2X7 receptor signaling in Zika-related brain abnormalities. Wild-type mice (WT) and P2X7 receptor-deficient (P2X7-/-) C57BL/6 newborn mice were subcutaneously inoculated with 5 × 106plaque-forming units of ZIKV or mock solution. P2X7 receptor expression increased in the brain of Zika virus-infected mice compared to the mock group. Comparative analyses of the hippocampi from WT and P2X7-/-mice revealed that the P2X7 receptor increased hippocampal damage in CA1/CA2 and CA3 regions. Doublecortin expression decreased significantly in the brains of ZIKV-infected mice. WT ZIKV-infected mice showed impaired motor performance compared to P2X7-/- infected mice. WT ZIKV-infected animals showed increased expression of glial markers GFAP (astrocytes) and IBA-1 (microglia) compared to P2X7-/- infected mice. Although the P2X7 receptor contributes to neuronal loss and neuroinflammation, WT mice were more efficient in controlling the viral load in the brain than P2X7 receptor-deficient mice. This result was associated with higher induction of TNF-α, IFN-ß, and increased interferon-stimulated gene expression in WT mice than P2X7-/-ZIKV-infected. Finally, we found that the P2X7 receptor contributes to inhibiting the neuroprotective signaling pathway AKT/mTOR while stimulating the caspase-3 activation, possibly two distinct pathways contributing to neurodegeneration. These findings suggest that ATP-P2X7 receptor signaling contributes to the antiviral response in the brain of ZIKV-infected mice while increasing neuronal loss, neuroinflammation, and related brain abnormalities.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Feminino , Animais , Camundongos , Zika virus/genética , Doenças Neuroinflamatórias , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Transdução de Sinais , Trifosfato de Adenosina
3.
Neurotox Res ; 41(6): 559-570, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37515718

RESUMO

Quinolinic acid (QUIN) is a toxic compound with pro-oxidant, pro-inflammatory, and pro-apoptotic actions found at high levels in the central nervous system (CNS) in several pathological conditions. Due to the toxicity of QUIN, it is important to evaluate strategies to protect against the damage caused by this metabolite in the brain. In this context, coenzyme Q10 (CoQ10) is a provitamin present in the mitochondria with a protective role in cells through several mechanisms of action. Based on these, the present study was aimed at evaluating the possible neuroprotective role of CoQ10 against damage caused by QUIN in the striatum of young Wistar rats. Twenty-one-day-old rats underwent a 10-day pretreatment with CoQ10 or saline (control) intraperitoneal injections and on the 30th day of life received QUIN intrastriatal or saline (control) administration. The animals were submitted to behavior tests or euthanized, and the striatum was dissected to neurochemical studies. Results showed that CoQ10 was able to prevent behavioral changes (the open field, object recognition, and pole test tasks) and neurochemical parameters (alteration in the gene expression of IL-1ß, IL-6, SOD, and GPx, as well as in the immunocontent of cytoplasmic Nrf2 and nuclear p-Nf-κß) caused by QUIN. These findings demonstrate the promising therapeutic effects of CoQ10 against QUIN toxicity.


Assuntos
Ácido Quinolínico , Ubiquinona , Ratos , Animais , Ubiquinona/farmacologia , Ratos Wistar , Ácido Quinolínico/toxicidade , Oxirredução , Estresse Oxidativo
4.
Front Pharmacol ; 14: 1179723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153798

RESUMO

Introduction: Sepsis is defined as a multifactorial debilitating condition with high risks of death. The intense inflammatory response causes deleterious effects on the brain, a condition called sepsis-associated encephalopathy. Neuroinflammation or pathogen recognition are able to stress cells, resulting in ATP (Adenosine Triphosphate) release and P2X7 receptor activation, which is abundantly expressed in the brain. The P2X7 receptor contributes to chronic neurodegenerative and neuroinflammatory diseases; however, its function in long-term neurological impairment caused by sepsis remains unclear. Therefore, we sought to evaluate the effects of P2X7 receptor activation in neuroinflammatory and behavioral changes in sepsis-surviving mice. Methods: Sepsis was induced in wild-type (WT), P2X7-/-, and BBG (Brilliant Blue G)-treated mice by cecal ligation and perforation (CLP). On the thirteenth day after the surgery, the cognitive function of mice was assessed using the novel recognition object and Water T-maze tests. Acetylcholinesterase (AChE) activity, microglial and astrocytic activation markers, and cytokine production were also evaluated. Results: Initially, we observed that both WT and P2X7-/- sepsis-surviving mice showed memory impairment 13 days after surgery, once they did not differentiate between novel and familiar objects. Both groups of animals presented increased AChE activity in the hippocampus and cerebral cortex. However, the absence of P2X7 prevented partly this increase in the cerebral cortex. Likewise, P2X7 absence decreased ionized calcium-binding protein 1 (Iba-1) and glial fibrillary acidic protein (GFAP) upregulation in the cerebral cortex of sepsis-surviving animals. There was an increase in GFAP protein levels in the cerebral cortex but not in the hippocampus of both WT and P2X7-/- sepsis-surviving animals. Pharmacological inhibition or genetic deletion of P2X7 receptor attenuated the production of Interleukin-1ß (IL-1ß), Tumor necrosis factor-α (TNF-α), and Interleukin-10 (IL-10). Conclusion: The modulation of the P2X7 receptor in sepsis-surviving animals may reduce neuroinflammation and prevent cognitive impairment due to sepsis-associated encephalopathy, being considered an important therapeutic target.

5.
Front Immunol ; 14: 1158460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37114062

RESUMO

Despite long-term sequelae of COVID-19 are emerging as a substantial public health concern, the mechanism underlying these processes still unclear. Evidence demonstrates that SARS-CoV-2 Spike protein can reach different brain regions, irrespective of viral brain replication resulting in activation of pattern recognition receptors (PRRs) and neuroinflammation. Considering that microglia dysfunction, which is regulated by a whole array of purinergic receptors, may be a central event in COVID-19 neuropathology, we investigated the impact of SARS-CoV-2 Spike protein on microglial purinergic signaling. Here, we demonstrate that cultured microglial cells (BV2 line) exposed to Spike protein induce ATP secretion and upregulation of P2Y6, P2Y12, NTPDase2 and NTPDase3 transcripts. Also, immunocytochemistry analysis shows that spike protein increases the expression of P2X7, P2Y1, P2Y6, and P2Y12 in BV2 cells. Additional, hippocampal tissue of Spike infused animals (6,5ug/site, i.c.v.) presents increased mRNA levels of P2X7, P2Y1, P2Y6, P2Y12, NTPDase1, and NTPDase2. Immunohistochemistry experiments confirmed high expression of the P2X7 receptor in microglial cells in CA3/DG hippocampal regions after spike infusion. These findings suggest that SARS-CoV-2 Spike protein modulates microglial purinergic signaling and opens new avenues for investigating the potential of purinergic receptors to mitigate COVID-19 consequences.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , Microglia/metabolismo , COVID-19/metabolismo , SARS-CoV-2
6.
Life Sci ; 306: 120793, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850244

RESUMO

AIMS: Prostate cancer is the second most frequently malignancy in men worldwide. Most deaths are caused by metastasis, and tumor cell dissemination involves the interaction with endothelial cells. However, the endothelial cell signaling involved in such interaction is not entirely understood. The tumor microenvironment contains extracellular ATP, an endogenous agonist of the purinergic P2Y2 receptor (P2Y2R). P2Y2R signaling changes endothelial cell phenotype, which may be relevant to cancer pathophysiology. Therefore, we hypothesized that P2Y2R activation could favor the metastatic prostate cancer cells adhesion to endothelial cells. MAIN METHODS: For adhesion assays, confluent endothelial cells EA.hy926 were treated with P2Y2R agonists before adding and imaging stained DU-145 cells. Alternatively, fluorescent probes and antibodies were used to determine intracellular endothelial Ca2+, nitric oxide (NO), and flow cytometry assays. KEY FINDINGS: Endothelial P2Y2R activation with ATP, UTP, or the selective agonist 2-thio-UTP increased DU-145 cell adhesion to EA.hy926 cells. This effect required endothelial cell Ca2+ mobilization and relied on the endothelial expression of VCAM-1 and ICAM-1. Conversely, inhibiting this proadhesive endothelial phenotype could impair DU-145 cell adhesion. To evaluate this, we chose atorvastatin based on its notable improvement of endothelial cell dysfunction. Atorvastatin blocked UTP-induced DU-145 cell adhesion to endothelial cell monolayer in a NO-dependent manner, unveiling a P2Y2R and NO signaling crosstalk. SIGNIFICANCE: Endothelial P2Y2R signaling contributes to the adhesion of metastatic prostate cancer cells suggesting that the downstream signaling blockade by statins could be a putative mechanism to reduce prostate cancer metastasis.


Assuntos
Células Endoteliais , Neoplasias da Próstata , Trifosfato de Adenosina/metabolismo , Atorvastatina/metabolismo , Adesão Celular , Células Endoteliais/metabolismo , Humanos , Masculino , Neoplasias da Próstata/patologia , Microambiente Tumoral , Uridina Trifosfato/metabolismo
7.
Redox Biol ; 47: 102137, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34563872

RESUMO

Purinergic signaling is a cell communication pathway mediated by extracellular nucleotides and nucleosides. Tri- and diphosphonucleotides are released in physiological and pathological circumstances activating purinergic type 2 receptors (P2 receptors): P2X ion channels and P2Y G protein-coupled receptors. The activation of these receptors triggers the production of reactive oxygen and nitrogen species and alters antioxidant defenses, modulating the redox biology of cells. The activation of P2 receptors is controlled by ecto-enzymes named ectonucleotidases, E-NTPDase1/CD39 and ecto-5'-nucleotidase/CD73) being the most relevant. The first enzyme hydrolyzes adenosine triphosphate (ATP) and adenosine diphosphate (ADP) into adenosine monophosphate (AMP), and the second catalyzes the hydrolysis of AMP to adenosine. The activity of these enzymes is diminished by oxidative stress. Adenosine actives P1 G-coupled receptors that, in general, promote the maintenance of redox hemostasis by decreasing reactive oxygen species (ROS) production and increase antioxidant enzymes. Intracellular purine metabolism can also contribute to ROS generation via xanthine oxidase activity, which converts hypoxanthine into xanthine, and finally, uric acid. In this review, we describe the mechanisms of redox biology modulated by purinergic signaling and how this signaling may be affected by disturbances in the redox homeostasis of cells.


Assuntos
Trifosfato de Adenosina , Adenosina , Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Biologia , Oxirredução
8.
Life Sci ; 277: 119386, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774024

RESUMO

AIMS: Homocysteine has been linked to neurodegeneration and motor function impairments. In the present study, we evaluate the effect of chronic mild hyperhomocysteinemia on the motor behavior (motor coordination, functional performance, and muscular force) and biochemical parameters (oxidative stress, energy metabolism, gene expression and/or protein abundance of cytokine related to the inflammatory pathways and acetylcholinesterase) in the striatum and cerebellum of Wistar male rats. MAIN METHODS: Rodents were submitted to one injection of homocysteine (0.03 µmol Hcy/g of body weight) between 30th and 60th postnatal days twice a day. After hyperhomocysteinemia induction, rats were submitted to horizontal ladder walking, beam balance, suspension, and vertical pole tests and/or euthanized to brain dissection for biochemical and molecular assays. KEY FINDINGS: Chronic mild hyperhomocysteinemia did not alter motor function, but induced oxidative stress and impaired mitochondrial complex IV activity in both structures. In the striatum, hyperhomocysteinemia decreased TNF-α gene expression and increased IL-1ß gene expression and acetylcholinesterase activity. In the cerebellum, hyperhomocysteinemia increased gene expression of TNF-α, IL-1ß, IL-10, and TGF-ß, while the acetylcholinesterase activity was decreased. In both structures, hyperhomocysteinemia decreased acetylcholinesterase protein abundance without altering total p-NF-κB, NF-κB, Nrf-2, and cleaved caspase-3. SIGNIFICANCE: Chronic mild hyperhomocysteinemia compromises several biochemical/molecular parameters, signaling pathways, oxidative stress, and chronic inflammation in the striatum and cerebellum of rats without impairing motor function. These alterations may be related to the mechanisms in which hyperhomocysteinemia has been linked to movement disorders later in life and neurodegeneration.


Assuntos
Cerebelo/patologia , Corpo Estriado/patologia , Citocinas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hiper-Homocisteinemia/fisiopatologia , Estresse Oxidativo , Animais , Cerebelo/metabolismo , Corpo Estriado/metabolismo , Citocinas/genética , Metabolismo Energético , Regulação da Expressão Gênica , Homocisteína/metabolismo , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Ratos , Ratos Wistar
9.
Purinergic Signal ; 16(4): 561-572, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33090332

RESUMO

Sepsis is a severe disease characterized by an uncontrolled systemic inflammation and consequent organ dysfunction generated in response to an infection. Extracellular ATP acting through the P2X7 receptor induces the maturation and release of pro-inflammatory cytokines (i.e., IL-1ß) and the production of reactive nitrogen and oxygen species that lead to oxidative tissue damage. Here, we investigated the role of the P2X7 receptor in inflammation, oxidative stress, and liver injury in sepsis. Sepsis was induced by cecal ligation and puncture (CLP) in wild-type (WT) and P2X7 knockout (P2X7-/-) mice. The oxidative stress in the liver of septic mice was assessed by 2',7'-dichlorofluorescein oxidation reaction (DCF), thiobarbituric acid-reactive substances (TBARS), and nitrite levels dosage. The status of the endogenous defense system was evaluated through catalase (CAT) and superoxide dismutase (SOD) activities. The inflammation was assessed histologically and by determining the expression of inflammatory cytokines and chemokines by RT-qPCR. We observed an increase in the reactive species and lipid peroxidation in the liver of septic WT mice, but not in the liver from P2X7-/- animals. We found an imbalance SOD/CAT ratio, also only WT septic animals. The number of inflammatory cells and the gene expression of IL-1 ß, IL-6, TNF-α, IL-10, CXCL1, and CXCL2 were higher in the liver of WT septic mice in comparison to P2X7-/- septic animals. In summary, our results suggest that the P2X7 receptor might be a therapeutic target to limit oxidative stress damage and liver injury during sepsis.


Assuntos
Hepatopatias/metabolismo , Estresse Oxidativo/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Sepse/metabolismo , Sepse/patologia , Animais , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Brain Behav Immun ; 89: 480-490, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32717399

RESUMO

The incidence of infectious diseases affecting the central nervous system (CNS) has been increasing over the last several years. Among the reasons for the expansion of these diseases and the appearance of new neuropathogens are globalization, global warming, and the increased proximity between humans and wild animals due to human activities such as deforestation. Neurotropism affecting normal brain function is shared by organisms such as viruses, bacteria, fungi, and parasites. Neuroinfections caused by these agents activate immune responses, inducing neuroinflammation, excitotoxicity, and neurodegeneration. Purinergic signaling is an evolutionarily conserved signaling pathway associated with these neuropathologies. During neuroinfections, host cells release ATP as an extracellular danger signal with pro-inflammatory activities. ATP is metabolized to its derivatives by ectonucleotidases such as CD39 and CD73; ATP and its metabolites modulate neuronal and immune mechanisms through P1 and P2 purinergic receptors that are involved in pathophysiological mechanisms of neuroinfections. In this review we discuss the beneficial or deleterious effects of various components of the purinergic signaling pathway in infectious diseases that affect the CNS, including human immunodeficiency virus (HIV-1) infection, herpes simplex virus type 1 (HSV-1) infection, bacterial meningitis, sepsis, cryptococcosis, toxoplasmosis, and malaria. We also provide a description of this signaling pathway in emerging viral infections with neurological implications such as Zika and SARS-CoV-2.


Assuntos
Infecções do Sistema Nervoso Central/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Complexo AIDS Demência/metabolismo , Betacoronavirus , COVID-19 , Infecções por Coronavirus/metabolismo , Encefalite por Herpes Simples/metabolismo , Humanos , Malária/metabolismo , Meningites Bacterianas/metabolismo , Meningite Criptocócica/metabolismo , Pandemias , Pneumonia Viral/metabolismo , SARS-CoV-2 , Sepse/metabolismo , Transdução de Sinais , Toxoplasmose Cerebral/metabolismo , Infecção por Zika virus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...